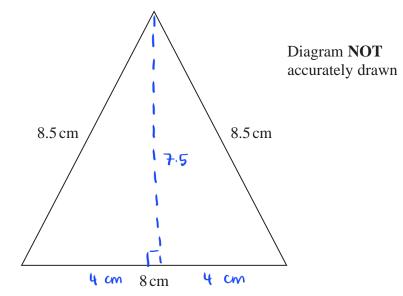
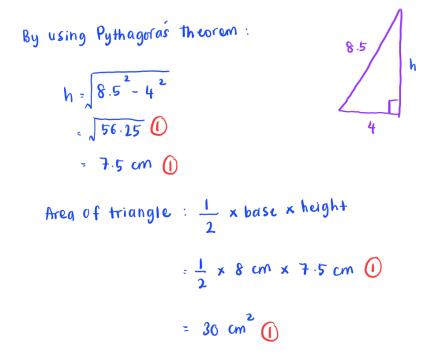

1 Markus makes a steel framework. The framework is in the shape of the right-angled triangle *ABC* shown in the diagram.



The steel that Markus uses costs \$22 per metre.

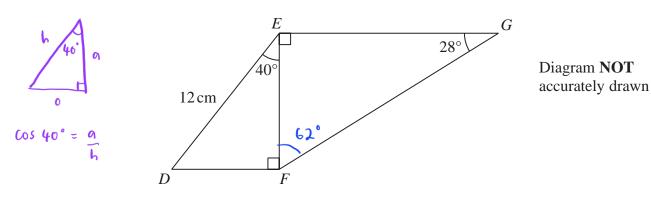

The steel can **only** be bought in a length that is a whole number of metres.

Work out the total cost of the steel that Markus buys in order to make the framework.


Finding length AC using Pythagoras' Theorem :  $AC = [4.3^{2} + 6.4^{2}]$ 2 7.71 M (I) Finding total length of framework : 18.4 m 7.71 m + 4.3 m + 6.4 m ς . Since steel can only be bought in whole number of metres, round up 18.4 m to 19 m. Cannot round down to 18 m. Not enough for total framework . Total cost of steel : 19 x \$22  $(\mathbf{1})$ = \$ 418 418 \$

(Total for Question 1 is 4 marks)

2 The diagram shows an isosceles triangle.




Work out the area of the triangle.



(Total for Question 2 is 4 marks)

**3** The diagram shows two right-angled triangles, *DEF* and *EFG*.



6

Work out the length of EG.

Give your answer correct to 3 significant figures.

$$EF = 12 \cos 40^{\circ}$$
 ()  
= 9.1925 cm ()

$$4 \text{ GFE} = 180^{\circ} - 90^{\circ} - 28^{\circ}$$
  
= 62°  
 $4 \text{ an } 62^{\circ} = \text{EG}$ 

17 · 3 (1) cm

(Total for Question 3 is 4 marks)

4 The diagram shows a rectangle and a diagonal of the rectangle.

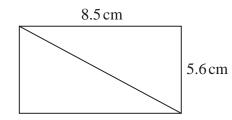



Diagram **NOT** accurately drawn

Work out the length of the diagonal of the rectangle. Give your answer correct to 1 decimal place.

```
Using Pythagoras' theorem :

d_{1}agonal = \sqrt{8.5^{2} + 5.6^{2}} (1)

= \sqrt{103.61} (1)

= 10.2 (1)
```

|  |      |  |  |  |  |  | ۱ | 1 | Ĉ | ) |  | 2 | 2 |  |  |  |  |  |  |  |  |  |  |    |   |
|--|------|--|--|--|--|--|---|---|---|---|--|---|---|--|--|--|--|--|--|--|--|--|--|----|---|
|  | <br> |  |  |  |  |  |   |   |   |   |  |   |   |  |  |  |  |  |  |  |  |  |  | cm | l |

(Total for Question 4 is 3 marks)

**5** The diagram shows a shaded shape *ABCD* made from a semicircle *ABC* and a right-angled triangle *ACD*.

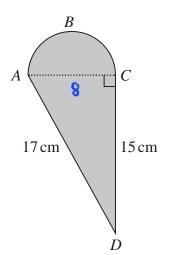
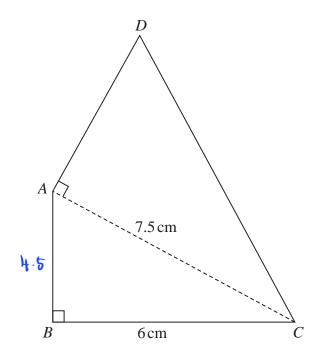



Diagram **NOT** accurately drawn

AC is the diameter of the semicircle ABC.

Work out the perimeter of the shaded shape. Give your answer correct to 3 significant figures.

> By using Pythageras' Theorem :  $Ac^2 = AD^2 - CO^2$   $Ac^2 = 17^2 - 15^2$   $Ac = \sqrt{64}$ = 8 cm


Length ABC =  $\frac{1C \times 8}{2}$  = 4 tC (1)

Perimeter of shaded shape: 412 + 15 + 17 (1)

**44**.6 cm

(Total for Question 5 is 5 marks)

6 The diagram shows a quadrilateral ABCD



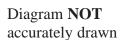
In the diagram, ABC and DAC are right-angled triangles.

 $BC = 6 \,\mathrm{cm}$   $AC = 7.5 \,\mathrm{cm}$ 

The area of quadrilateral *ABCD* is  $31.5 \text{ cm}^2$ 

Work out the length of AD

By using Pythagoras' theorem : length AB =  $\int 7.5^2 - 6^2$  () = 4.5 cm ()

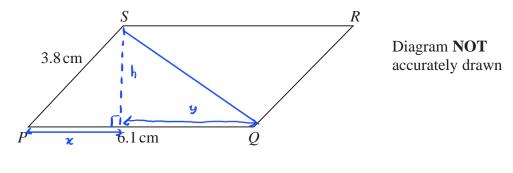

Area of triangle ABC :  $\frac{1}{2} \times 6 \times 4.5 = 13.5$  cm (1)

Areq of triangle ADC: 31.5 - 18.5 = 18 cm² (1)

$$\frac{1}{2} \times AD \times 7.5 = 18$$

$$AO = \frac{18}{7.5} \times 2$$

$$= 4.8 \text{ cm (1)}$$




٦

**4** ⋅ **8** cm

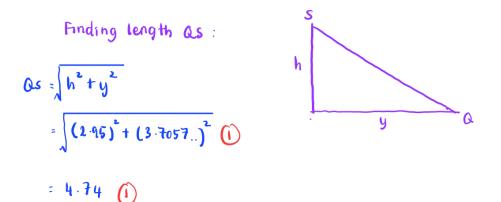
(Total for Question 6 is 6 marks)

7 Here is a parallelogram PQRS, in which angle SPQ is acute.



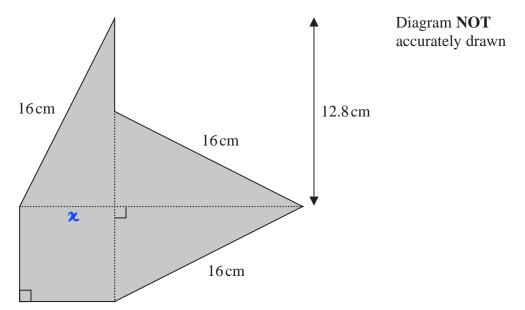
 $PQ = 6.1 \,\mathrm{cm}$   $PS = 3.8 \,\mathrm{cm}$  Area of parallelogram = base x height

The area of the parallelogram is  $18 \text{ cm}^2$ 


Work out the length of *QS* Give your answer correct to 3 significant figures.

Area of parallelogram = 18 = 6.1 × h  $h = \frac{18}{6.1} = 2.95...,$ 

Finding length x by Pythagoras' Theorem :


$$\chi = \sqrt{3.8^2 - 2.95^2}$$
  
=  $2.394....$ 

length y = 6.1 - 2.394 = 3.7057....



(Total for Question 7 is 5 marks)

8 The shaded shape is made using three identical right-angled triangles and a square.



Work out the perimeter of the shaded shape.

$$x = 16^{2} - 12.8^{2}$$

$$= 92.16$$

$$x = \sqrt{92.16}$$

$$= 9.6$$

Perimeter =  $16 \pm 9.6 \pm 9.6 \pm 16 \pm 16 \pm (12.8 - 9.6)$  (1) = 70.4 (1)

70.4

..... cm

(Total for Question 8 is 4 marks)

9 The diagram shows isosceles triangle *ABC* 

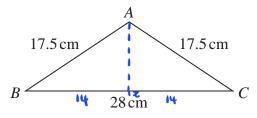



Diagram **NOT** accurately drawn

AB = AC = 17.5 cm

BC = 28 cm

Calculate the area of triangle ABC

$$Ax = \sqrt{17.5^{2} - 14^{2}}$$

$$= \sqrt{110.25}$$

$$= 10.5$$
(1)

Area ABC = 
$$2 \times \frac{1}{2} \times 10.5 \times 14$$
 (1)  
= 147 cm<sup>2</sup>  
(1)

**147** cm<sup>2</sup>

(Total for Question 9 is 4 marks)

10 The diagram shows an isosceles triangle, with base length  $24 \, \text{cm}$ .

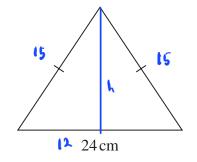
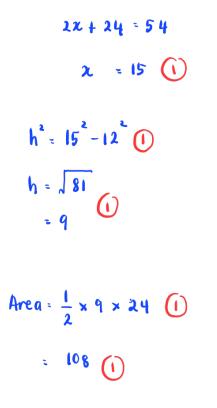




Diagram **NOT** accurately drawn

The perimeter of the triangle is 54 cm.

Work out the area of the triangle.



**10 8** cm<sup>2</sup>

(Total for Question 10 is 5 marks)

11 The diagram shows a shape made up of three semicircles, enclosing a right-angled triangle.

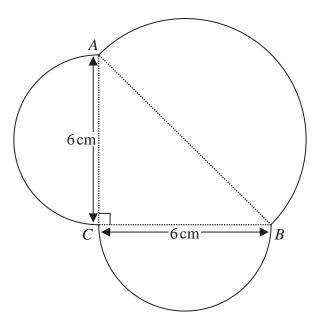



Diagram **NOT** accurately drawn

AB, BC and CA are each the diameter of a semicircle.

 $BC = CA = 6 \,\mathrm{cm}.$ 

Work out the perimeter of the shape. Give your answer correct to one decimal place.

$$A_{B}^{2} = 6^{2} + 6^{2}$$

$$A_{B}^{2} = 72$$

$$A_{B} = 72$$

$$A_{B} = \sqrt{72} = 8 \cdot 48 \cdots$$

$$(1)$$

$$Perimeter = \frac{1}{2} \times \pi \times 6 + \frac{1}{2} \times \pi \times 6 + \frac{1}{2} \times \pi \times 8 \cdot 48 \cdots$$

$$= 3\pi + 3\pi + 4 \cdot 24\pi$$

$$= 32 \cdot 4\pi$$

$$= 32 \cdot 4\pi$$

$$= 32 \cdot 4\pi$$

$$= 32 \cdot 2(1 d \cdot p \cdot)$$

$$= 32 \cdot 2 \cdots$$

$$= 32 \cdot 2 \cdots$$

(Total for Question 11 is 5 marks)

## 12 Here is a cuboid *ABCDEFGH*

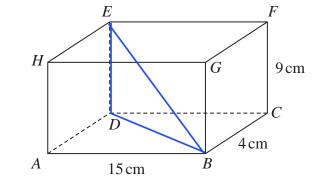
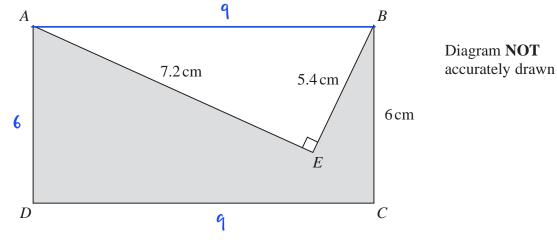
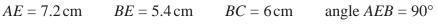




Diagram **NOT** accurately drawn

 $AB = 15 \,\mathrm{cm}$   $BC = 4 \,\mathrm{cm}$   $CF = 9 \,\mathrm{cm}$ 


(a) Work out the length of *BE* Give your answer correct to 3 significant figures.


$$BD = \sqrt{15^{2} + 4^{2}}$$
  
=  $\sqrt{225 + 16}$   
=  $\sqrt{241}$   
$$BE = \sqrt{(\sqrt{241})^{2} + 9^{2}}$$
  
=  $\sqrt{241 + 81}$   
=  $\sqrt{322}$  (1)  
=  $17 \cdot 9$  (3 s · f · )  
(1)



(Total for Question 12 is 2 marks)

**13** The diagram shows a shaded shape *AEBCD* made by removing triangle *AEB* from rectangle *ABCD* 





Work out the perimeter of the shaded shape.

 $RB^{2} = 7.2^{2} + 5.4^{2}$ = 81 (1)  $AB = \sqrt{81} = 9$  (1)

Perimeter = 6 + 7.2 + 5.4 + 6 + 9 (1)

- 33.6 ()

**33.6** cm

(Total for Question 13 is 4 marks)